Showing posts with label Statistics. Show all posts
Showing posts with label Statistics. Show all posts

Wednesday, 18 November 2020

Range

Not to be abashed with Mid-range.
This commodity is about the ambit in statistics. For the ambit as it pertains to functions, see ambit of a function.

In statistics, the ambit of a set of abstracts is the aberration amid the better and aboriginal values. It can accord you a asperous abstraction of how the aftereffect of the abstracts set will be afore you attending at it absolutely [1] Aberration actuality is specific, the ambit of a set of abstracts is the aftereffect of abacus the aboriginal amount from better value.

However, in anecdotic statistics, this abstraction of ambit has a added circuitous meaning. The ambit is the admeasurement of the aboriginal breach (statistics) which contains all the abstracts and provides an adumbration of statistical dispersion. It is abstinent in the aforementioned units as the data. Since it alone depends on two of the observations, it is best advantageous in apery the burning of baby abstracts sets.[2] Ambit happens to be the everyman and the hightest numbers subtracted
For connected IID accidental variables

For n absolute and analogously broadcast connected accidental variables X1, X2, ..., Xn with accumulative administration action G(x) and anticipation body action g(x). Let T denote the ambit of a sample of admeasurement n from a citizenry with administration action G(x).
Distribution

The ambit has accumulative administration function[3][4]

        F ( t ) = n ∫ − ∞ ∞ g ( x ) [ G ( x + t ) − G ( x ) ] n − 1 d x . {\displaystyle F(t)=n\int _{-\infty }^{\infty }g(x)[G(x+t)-G(x)]^{n-1}\,{\text{d}}x.} {\displaystyle F(t)=n\int _{-\infty }^{\infty }g(x)[G(x+t)-G(x)]^{n-1}\,{\text{d}}x.}

Gumbel addendum that the "beauty of this blueprint is absolutely bedridden by the facts that, in general, we cannot accurate G(x + t) by G(x), and that the after affiliation is diffuse and tiresome."[3]:385

If the administration of anniversary Xi is bound to the appropriate (or left) again the asymptotic administration of the ambit is according to the asymptotic administration of the better (smallest) value. For added accepted distributions the asymptotic administration can be bidding as a Bessel function.[3]
Moments

The beggarly ambit is accustomed by[5]

        n ∫ 0 1 x ( G ) [ G n − 1 − ( 1 − G ) n − 1 ] d G {\displaystyle n\int _{0}^{1}x(G)[G^{n-1}-(1-G)^{n-1}]\,{\text{d}}G} {\displaystyle n\int _{0}^{1}x(G)[G^{n-1}-(1-G)^{n-1}]\,{\text{d}}G}

where x(G) is the changed function. In the case area anniversary of the Xi has a accepted accustomed distribution, the beggarly ambit is accustomed by[6]

        ∫ − ∞ ∞ ( 1 − ( 1 − Φ ( x ) ) n − Φ ( x ) n ) d x . {\displaystyle \int _{-\infty }^{\infty }(1-(1-\Phi (x))^{n}-\Phi (x)^{n})\,{\text{d}}x.} {\displaystyle \int _{-\infty }^{\infty }(1-(1-\Phi (x))^{n}-\Phi (x)^{n})\,{\text{d}}x.}

For connected non-IID accidental variables

For n nonidentically broadcast absolute connected accidental variables X1, X2, ..., Xn with accumulative administration functions G1(x), G2(x), ..., Gn(x) and anticipation body functions g1(x), g2(x), ..., gn(x), the ambit has accumulative administration action [4]

        F ( t ) = ∑ i = 1 n ∫ − ∞ ∞ g i ( x ) ∏ j = 1 , j ≠ i n [ G j ( x + t ) − G j ( x ) ] d x . {\displaystyle F(t)=\sum _{i=1}^{n}\int _{-\infty }^{\infty }g_{i}(x)\prod _{j=1,j\neq i}^{n}[G_{j}(x+t)-G_{j}(x)]\,{\text{d}}x.} {\displaystyle F(t)=\sum _{i=1}^{n}\int _{-\infty }^{\infty }g_{i}(x)\prod _{j=1,j\neq i}^{n}[G_{j}(x+t)-G_{j}(x)]\,{\text{d}}x.}

For detached IID accidental variables

For n absolute and analogously broadcast detached accidental variables X1, X2, ..., Xn with accumulative administration action G(x) and anticipation accumulation action g(x) the ambit of the Xi is the ambit of a sample of admeasurement n from a citizenry with administration action G(x). We can accept after accident of generality that the abutment of anniversary Xi is {1,2,3,...,N} area N is a absolute accumulation or infinity.[7][8]
Distribution

The ambit has anticipation accumulation function[7][9][10]

        f ( t ) = { ∑ x = 1 N [ g ( x ) ] n t = 0 ∑ x = 1 N − t ( [ G ( x + t ) − G ( x − 1 ) ] n − [ G ( x + t ) − G ( x ) ] n − [ G ( x + t − 1 ) − G ( x − 1 ) ] n + [ G ( x + t − 1 ) − G ( x ) ] n ) t = 1 , 2 , 3 … , N − 1. {\displaystyle f(t)={\begin{cases}\sum _{x=1}^{N}[g(x)]^{n}&t=0\\[6pt]\sum _{x=1}^{N-t}\left({\begin{alignedat}{2}&[G(x+t)-G(x-1)]^{n}\\{}-{}&[G(x+t)-G(x)]^{n}\\{}-{}&[G(x+t-1)-G(x-1)]^{n}\\{}+{}&[G(x+t-1)-G(x)]^{n}\\\end{alignedat}}\right)&t=1,2,3\ldots ,N-1.\end{cases}}} {\displaystyle f(t)={\begin{cases}\sum _{x=1}^{N}[g(x)]^{n}&t=0\\[6pt]\sum _{x=1}^{N-t}\left({\begin{alignedat}{2}&[G(x+t)-G(x-1)]^{n}\\{}-{}&[G(x+t)-G(x)]^{n}\\{}-{}&[G(x+t-1)-G(x-1)]^{n}\\{}+{}&[G(x+t-1)-G(x)]^{n}\\\end{alignedat}}\right)&t=1,2,3\ldots ,N-1.\end{cases}}}

Example

If we accept that g(x) = 1/N, the detached compatible administration for all x, again we find[9][11]

        f ( t ) = { 1 N n − 1 t = 0 ∑ x = 1 N − t ( [ t + 1 N ] n − 2 [ t N ] n + [ t − 1 N ] n ) t = 1 , 2 , 3 … , N − 1. {\displaystyle f(t)={\begin{cases}{\frac {1}{N^{n-1}}}&t=0\\[4pt]\sum _{x=1}^{N-t}\left(\left[{\frac {t+1}{N}}\right]^{n}-2\left[{\frac {t}{N}}\right]^{n}+\left[{\frac {t-1}{N}}\right]^{n}\right)&t=1,2,3\ldots ,N-1.\end{cases}}} {\displaystyle f(t)={\begin{cases}{\frac {1}{N^{n-1}}}&t=0\\[4pt]\sum _{x=1}^{N-t}\left(\left[{\frac {t+1}{N}}\right]^{n}-2\left[{\frac {t}{N}}\right]^{n}+\left[{\frac {t-1}{N}}\right]^{n}\right)&t=1,2,3\ldots ,N-1.\end{cases}}}

Derivation

The anticipation of accepting a specific ambit value, t, can be bent by abacus the probabilities of accepting two samples differing by t, and every added sample accepting a amount amid the two extremes. The anticipation of one sample accepting a amount of x is n g ( x ) {\displaystyle ng(x)} {\displaystyle ng(x)}. The anticipation of addition accepting a amount t greater than x is:

    ( n − 1 ) g ( x + t ) . {\displaystyle (n-1)g(x+t).} {\displaystyle (n-1)g(x+t).}

The anticipation of all added ethics lying amid these two extremes is:

    ( ∫ x x + t g ( x ) d x ) n − 2 = ( G ( x + t ) − G ( x ) ) n − 2 . {\displaystyle \left(\int _{x}^{x+t}g(x)\,{\text{d}}x\right)^{n-2}=\left(G(x+t)-G(x)\right)^{n-2}.} {\displaystyle \left(\int _{x}^{x+t}g(x)\,{\text{d}}x\right)^{n-2}=\left(G(x+t)-G(x)\right)^{n-2}.}

Combining the three calm yields:

    f ( t ) = n ( n − 1 ) ∫ − ∞ ∞ g ( x ) g ( x + t ) [ G ( x + t ) − G ( x ) ] n − 2 d x {\displaystyle f(t)=n(n-1)\int _{-\infty }^{\infty }g(x)g(x+t)[G(x+t)-G(x)]^{n-2}\,{\text{d}}x} {\displaystyle f(t)=n(n-1)\int _{-\infty }^{\infty }g(x)g(x+t)[G(x+t)-G(x)]^{n-2}\,{\text{d}}x}

Related quantities
The ambit is a simple action of the sample best and minimum and these are specific examples of adjustment statistics. In particular, the ambit is a beeline action of adjustment statistics, which brings it into the ambit of L-estimation.

Tuesday, 20 October 2020

Statistical methods:

Statistical methods:

     Collection of data:

                * It is the first important step which is, collecting the data.
                * Planning is very important while collecting the data.
                * Different methods of collecting the data are:
                                  * Census.
                                  * Sampling.
                                  * Primary
                                  * Secondary.

      Presentation of Data:

                 * The collected data must be presented in a suitable manner.
                 * The collected data must be presented in the form of tabular or diagrammatic or in a graph form.

     Analysis of Data:
   
                 * The data presented must be carefully analyzed from the presented data.

      Interpretation of data:
 
                  * The final step is drawing conclusions from the data collected.
                  * Experience is necessary for the interpretation.

What are the characteristics of statistics?

Characteristics of statistics:

             Aggregate of facts:- 
                       
                     * statistics deals with group of facts but not a single item. 
                     * A single fact relating to sales, birth, purchase, etc is not statistics.
                     * Aggregate of facts relating to sales, purchase, birth, production, over different periods is known as statistics.

            Numerically expressed:

                      * The data can be expressed in quantitative terms.
                      * Quantitative term is good, bad, poor, young, old, etc.       
                      * The term which cannot be measured numerically is not statistics.
 
            Statistics should be estimated:

                      * The data can be obtained by actual counting.
                      * If the enquiry is large data can be estimated.

             Accuracy:

                       * The data collected should be in high accuracy.
                       *  Example: Height of trees, fraction of C.M can be ignored.

              

History and growth of statistics:

History and growth of statistics:

                        * Statistics is not a subject but as old as human civilization itself.

                         * It is the traditional function of the government to keep the records of population, birth, death, income, expenditure, etc.

                          * The word statistics is taken from Latin and this science is said to have originated from two main sources mainly:

                                        * Government records.
                                        * Mathematics.

                          * In earlier years government has recorded many data for government purpose.

                          * Statistics is considered as the branch of applied mathematics.
             
                          * The present statistical methods is based on mathematical theory.

                           * Statistics developed many fields that are presented in many industries.

                           * Statistics is considered as the important tool for making decisions.

     Definition:
               * According to Bowley statistics is, "A numerical statement or facts in any department of inquiry placed in relation to each other".


Monday, 19 October 2020

What are the basis of statistics?

Have you ever thought while learning statistics that what are the basis of statistics?. Ok let us learn briefly about the basis of statistics.

Basis of  statistics:

                * Statistics is a branch of science used in dealing with phenomena that can be described numerically by counts or by measurements.

                 * Thus, it refers quantitative information or the method of dealing with quantitative information.

                 * For example: It may relate to population, birth, production, fertility, sales profit, etc.

                 * Whenever numbers are collected, compiled and analyzed, they form statistics.

                  * The word statistics is used in two viz.

                                   * Singular 

                                   * Plural.

                   * In singular noun, it deals with collection, interpretation, of quantitative.

                   * In plural sense statistics denotes some numerical data such as birth, death, etc.

                   * The methods by which statistical data is collected is known as statistical methods.

C Programming

What is DBMS in brief?

A Database Management System (DBMS) is a software suite designed to efficiently manage, organize, store, manipulate, and retrieve data. It a...